Digital Signal Processing Solution for Permanent Magnet Synchronous Motor

ثبت نشده
چکیده

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (" Critical Applications "). Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Abstract This document presents a solution to control a permanent magnet synchronous motor using the TMS320C24x. This new family of DSPs enables cost-effective design of intelligent controllers for brushless motors which can fulfill enhanced operations, consisting of fewer system components, lower system cost and increased performances. The control method presented relies on the field orientated control (F.O.C.). This algorithm maintains efficiency in a wide range of speeds and takes into consideration torque changes with transient phases by controlling the flux directly from the rotor coordinates. Within this report different enhanced algorithms are presented. Among the solutions proposed are ways to suppress phase current sensors and using a sliding mode observer for speed sensorless control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Performance Analysis of High-Frequency Signal Injection Based Sensorless Methods for Interior Permanent Magnet Synchronous Motors

This paper focuses on three commonly used sensorless methods based on high-frequency signal injection; namely, the rotating sinusoidal injection in the stationary reference frame, the pulsating sinusoidal injection in the estimated synchronous reference frame, and the pulsating square wave injection in the estimated synchronous reference frame. Although these methods have found applications in ...

متن کامل

Novel Unified Control Method of Induction and Permanent Magnet Synchronous Motors

Many control schemes have been proposed for induction motor and permanent magnet synchronous motor control, which are almost highly complex and non-linear. Also, a simple and efficient method for unified control of the electric moto are rarely investigated. In this paper, a novel control method based on rotor flux orientation is proposed. The novelties of proposed method are elimination of q-ax...

متن کامل

Optimum Design of a Three-Phase Permanent Magnet Synchronous Motor for industrial applications

Permanent Magnet Synchronous Motors (PMSMs) have been widely used in many industrial applications. In This paper a new method for multi objective optimal design of a permanent magnet synchronous motor (PMSMs) with surface mounted permanent magnet rotor is presented to achieve maximum efficiency and power density using a Bees algorithm for industrial applications. The objective function is a...

متن کامل

Optimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization

Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...

متن کامل

Optimum Design of a Five-Phase Permanent Magnet Synchronous Motor for Underwater Vehicles by use of Particle Swarm Optimization

Permanent magnet synchronous motors are efficient motors, which have widespread applications in electric industry due to their noticeable features. One of the interesting applications of such motors is in underwater vehicles. In these cases, reaching to minimum volume and high torque of the motor are the major concern. Design optimization can enhance their merits considerably, thus reduce volum...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007